Table of Contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Scope of the Report</td>
<td>4</td>
</tr>
<tr>
<td>Existing Facility</td>
<td>4</td>
</tr>
<tr>
<td>Recommendations</td>
<td>11</td>
</tr>
<tr>
<td>Project Planning and Budgeting</td>
<td>15</td>
</tr>
</tbody>
</table>
INTRODUCTION

The Grosse Pointe Park Windmill Pointe Marina (the Marina) is located at the entrance to the Detroit River and provides access to Lake St. Clair to the northeast and Lake Erie to the south. The Marina is available for use by local Grosse Pointe Park residents and their guests. There is one transient slip available for both residents and non-residents on a daily rental basis. Park/Marina hours of operation are 7:00 AM to 11:00 PM; overnight occupancy and live-aboard arrangements on watercraft is not permitted by Marina rules.

A general parking area is available for all visitors using these facilities and the entrance is manned by a guardhouse. The Marina is available for the boating season from April 15 to November 15 annually.

The Marina area, from the seawall along the shoreline to the outer face of the breakwall, is approximately 7 to 8 acres. Within the Marina are 5 fixed main piers with attached finger docks for access to the boats (see Photo 1 and Figure 1.) The Marina currently contains 270 slips and can accommodate small watercraft and larger vessels up to 55 ft. (One additional slip in the northwest corner contains the work barge.) There are approximately 1,300 lineal feet of seawall along the shoreline and approximately 1,300 lineal feet of breakwall (not including the entranceway) projecting out into the water.

There is no boat launch facility within the Marina.

The entranceway is a deep water fairway with access directly to the Detroit River and Lake St. Clair. The Marina portion of the site is bounded by the Fox Creek to the south and a private residence to the north. The southeast corner of the breakwall is the farthest point out into the navigable waterway at this location along the Detroit River.
SCOPE OF THIS REPORT

The level of effort under this Report is to establish a baseline condition assessment for the Marina facility, establish potential priorities for upgrades, and assign a magnitude of cost budget for future planning purposes, to those priorities. It is intended that this Report be a high-level overview of the physical condition of the existing facility and only visual in nature. No topographical survey work, material testing, forensic engineering services, design sketches/concepts or assessment of non-Marina/Park related amenities and buildings/facilities are included with this Report scope. This assessment field visit was performed in April 2021.

EXISTING MARINA FACILITY

The overall Marina facility is in fair to poor condition and functionally obsolete for the current needs of today’s boaters. According to Park staff, numerous seasonal repairs are typically necessary due to water level fluctuations and ice damage to the finger piers during the winter months. Winter conditions are known to heave finger dock pilings causing the need (and expense) of re-setting many of them in the Spring.

Areas of erosion are also visible around the seawall at the shoreline (see Photo 2) and along the breakwall, (see Photo 3.) The breakwall has numerous asphalt patched areas from prior repairs. Ice flows also frequently break the metal cyclone fencing loose from the frame along the seawall fronting the Detroit River creating a safety concern. At the time of this assessment field visit, temporary plastic fencing had been installed to keep pedestrians away from the seawall area erosion and open wall edge areas.
The age of the constructed Marina elements is not known. The City has no existing drawings available for the facility. The steel sheeting on the breakwall contains riveted connections which would typically indicate that this particular element dates back to the late 1950’s. Whether or not the docks are of the same vintage is unknown.

In the northwest corner of the Marina, there is a flow gate structure under the breakwall that, when open, allows water to flow from Lake St. Clair into the Marina (see area on Figure 1.) It is reported that when the resident living adjacent to the Marina property repaired their seawall, a large void was found under the pavement, behind their seawall. The void is thought to extend under the Marina pavement at this area, east of the electrical substation and west of the breakwall (next to where the work barge is located on Figure 1.) At the time of the assessment visit, the flow gate was open when a freighter passed by. The freighter’s wake created tremendous turbulence in the water along the shoreline and the open flow gate allowed that rushing water to enter the Marina through the area approximately between slips 105 through 114, including where the work barge is located. See Photo 5 for this turbulence. Photo 4 is taken from the finger docks in this same area, looking back under the breakwall. Note the deterioration of the concrete support, just above the waterline, in this photo. Based on the velocity of the water that enters through the flow gate when large vessels pass by the Marina, it possible that this flow contributes to undermining the adjacent pavement areas and erosion within the breakwall, as well as adds wear to dock supports in this area. As noted in our Recommendations section, this flow gate should be closed to reduce this turbulence within the Marina.

Based upon aerial imagery, the breakwall is approximately 1,300 lineal feet long, not including the entranceway structure. The breakwall (past the point of the flow gate) has steel sheet piling on both sides and an asphalt surface. Photo 6 is taking looking east towards the entrance of the Detroit River and Photo 7 is taken looking north from the far opposite end of the breakwall, by the entranceway. The outside face of the sheet piling has steel plate caps with a continuous, painted plywood surface over the top. The plywood is in poor condition (visible in both Photos...
The barrier along the inside face of the breakwall is a metal cyclone fence that is in fair condition. Areas of prior patching due to erosion and washouts are visible along the sheet piling, similar to Photo 3.

The Marina entranceway is in the south portion of the harbor, see Photo 8. It is reported that due to the water current and configuration of the entrance walls, navigating and maneuvering, especially for a larger watercraft, can be difficult. Past the entrance to the west, along the seawall, is a pump out station, see Photo 9.

The main piers appear to be in fair condition but many of the top surfaces are not visible due to the placement of additional wood riser walkways. The walkways were added to raise the dock surfaces due to the past high water levels. The underlying dock structure, where visible, is fixed dock construction (i.e. pile supported), concrete
decking with steel sub-framing. There are 5 main piers with finger docks of varying lengths, see Photos 10, 11, 12, 13 and 14. Finger dock widths vary among the slips and extensions have been added to some finger docks on Piers 3 and 4 to accommodate larger boats. (See Photo 11 for a typical add-on extension.) Finger docks are generally in fair to poor condition. Some finger docks exhibit side-to-side movement and bounce under foot traffic. The connections of the finger dock steel framing to the main pier steel framing are not visible from the topside; these were likely fixed connections at one time and with the understanding that ice has heaved some finger docks in the past, as well as their age, suggests that these connections warrant a detailed inspection. This is further discussed in the Recommendations section.

Based on the data listed in the 2021 Boat Well Rental Rate Chart, slip width varies from approximately 7 ft wide to 15 ft wide. There are some wider slips of 18 ft and 20 ft for larger boats on Piers 3 and 4. The shortest slip length is 25 ft (except of one slip - #300, with a length of 16 ft) and the longest is 55 ft. Each pier has a gated entrance with signage, similar to Photo 15.

The current dock arrangement and access does not comply with State and Federal ADA accessibility guidelines. There are no compliant accessible slips at the Marina. Under the current Accessible Boating Facility guidelines, with 270 existing slips, 5 accessible slips would be required.
The piles supporting the main piers and finger docks are quite far apart, in some cases as much as 30 feet on center was observed. Typically, the spacing between supports would be closer than this. This condition also contributes to the lateral movement and bouncing nature of the finger docks noted prior.

The main piers have potable water system piping along them, to service the slips. Slips have hose bibs. Most of this water system appears to be galvanized pipe run along the sides of and under the docks. The galvanized pipe in some areas has been broken and temporary water service is being run using flexible plastic piping laid along the docks. In some instances, this plastic pipe presents a potential trip hazard along the dock surface, see Photos 16 and 17. Based on the elevation of the existing galvanized water piping, it is possible that it has been submerged in the past during high water levels.
Electrical systems at the Marina for Piers 1 through 4 are powered from their own 480 Volt, Delta utility service which is derived from (3) 100kVA pole mounted transformers. This small ‘substation’ area is enclosed by a fence and is protected by sandbags around its perimeter. It appears that high water, or the wake from the frequent freighters passing by, can potentially submerge the substation equipment, see Photo 18.

From this substation, 480 Volt power is distributed to several 30 or 45kVA 480V-208Y/120V transformers that each feed a local panelboard serving the individual slips and other miscellaneous loads at the Marina. The 480V conduit is generally run on the side of the docks, below dock level, or directly under the dock, see Photos 16, 17 and 19. For Pier 5, the 480 Volt service is provided from the Marina/Parks and Recreation Building.

The majority of the transformers and panelboards are located next to the docks at dock level. They are subject to submersion in the water when water levels are high, as well as any splashing that may occur in the Marina. There
was an observable water mark on some of the transformers, indicating that water has previously flooded the transformers, see Photo 20. This presents a clearly unsafe situation for the boaters, as it subjects the Marina to the possibility of stray current in the water. Additionally, the transformer expected life is likely shortened as the insulation within the transformer will expand and contract due to the water, increasing its fragility. A failed transformer will result in large sections of slips without power.

There are some areas where the additional wood dock risers have blocked access to the transformers and panelboards. It appears that the wood dock in those areas is removable, but this obviously creates an inconvenience for anyone attempting to service the transformer or panelboards.

Pier 4 has been de-energized for the past two years due to high water levels flooding the transformers and panelboards. This creates an inconvenience for boaters utilizing those slips, as they cannot get electricity for their boats.

Each slip contains a 30 Amp receptacle, which is fed from a dedicated 30 Amp circuit. This design is advantageous in that it reduces the likelihood of circuit breakers tripping as each boat is fed from its own circuit breaker. Each of these receptacles is located relatively low to the dock, which again presents a problem in that the receptacle is subject to submergence and may lead to stray current in the water. Some of the larger slips were noted to have multiple receptacles.

Other electrical loads at the Marina facility include area light poles located along the piers and WiFi hubs located at several of the piers. These are powered from 20 Amp circuits in the lighting panels located along the piers.
The light poles are inconsistent in the spacing and number of light fixtures on them, see Photo 21 for a typical installation. While the field assessment was not performed at night, based on a visual review of the lights, the number of poles, and pole spacing, it is likely that there are areas insufficiently lit.

RECOMMENDATIONS:

The Parks and Recreation staff have indicated that Marina Users desire wider and longer slips to accommodate the larger boating trend. As noted in the Introduction, the current breakwall is already the farthest point of construction into the navigable waterway (at this location in the Detroit River) and the Marina footprint is bounded on the north by a private residence and to the south by Fox Creek. It is highly unlikely that the State of Michigan and/or the US. Corp of Engineers will allow the Marina to expand beyond the limits of the current breakwall. As such, any reconfiguration of the slips needs to occur within the existing footprint. If larger - longer, wider slips are desired, then the existing number of slips will be reduced and there is nothing salvageable from the existing pier and dock configuration that will contribute to these improvements.

The Marina will need to be re-designed if the slips are to get larger. Based on general marina design guidelines and accessible boating requirements, the typical preferred design recommendations are for 8 ft wide main piers, 3 ft wide finger docks, and fairway widths that are 1.5X the slip length. For example, if 55 ft slips are desired, then the fairway width at these slips should be 82.5 ft. The current Marina cannot meet any of these recommendations without a complete re-design, nor does it meet accessibility standards as noted prior. Depending on layout options, narrower main piers and narrower finger docks may be necessary to maximize slip count but, the minimum number of accessible compliant slips must be provided, and those related piers/finger docks will need to meet accessible width requirements. (The number of accessible slips necessary is a function of the overall number of slips in a marina. These slip requirements are published in the United States Access Board, Accessible Boating Facilities Guidelines.) Wider main piers will also permit the addition of more conventional amenities expected by boaters such as marine pedestals at each slip that provide for the utilities - electric, cable TV and water, as well as night lighting for the walkways; dock boxes; room for carts to wheel boater accessories to slips, etc.

The utilities also require upgrading to raise them above the water level and safely locate them so that trip hazards are not present.

The Marina is functionally obsolete by todays boating standards.

Based on the above information, at the end of this Recommendations section, we outline suggested next steps as “General Maintenance” and “Planning for Future Improvements.” Due to the importance, potential high costs, and
safety nature of the electrical power serving the current Marina, further discussion follows below, with respect to this specific topic.

There were several electrical deficiencies noted that need to be addressed. If the Marina is re-designed, these deficiencies could be addressed in the renovation. This would prevent using monetary resources to perform work that would subsequently have to be altered for the renovation. Some of these improvements, however, can be done at any time, regardless of whether or not the Marina is renovated. HRC recommends performing those improvements first (Items 1 and 2A, as follows) when funds are made available, and then performing the remaining recommendations at a time dependent upon whether or not the Marina is renovated.

1) Electrical Substation Barrier:
For the fenced substation, this improvement project would require a permanent, non-permeable barrier to be installed around the substation in place of the fence and sandbags. This would protect the incoming power distribution equipment from being submerged and compromised by the high-water levels or wakes from freighters. This improvement could be performed at any time and will not conflict with any potential Marina redevelopment work. It would require the construction of a barrier wall, most likely made from concrete or precast concrete. Foundations would be necessary so knowledge of where the underground electrical is routed, and soils conditions in the area, as well as where the adjacent property line is, are key elements to assess the feasibility of a design solution. As is though, HRC understands that the sandbags are functional.

2) Relocate Transformers/Panelboards:
Due to the possible submergence of the transformers and panelboards, it is recommended to relocate the electrical equipment. This would especially apply to Pier No. 4, which has been out of service for two seasons due to high water level.

For this item, there are two possibilities: either raise the existing transformers and panelboards significantly above their current location or relocate the transformers and panelboards to dry land. If the equipment is relocated to dry land, then it should be replaced at that time also.

2A) Dry Land:
If the transformers and panelboards are relocated to dry land, this would necessitate also running new conduit and wiring for 120 Volt power to each of the slips. New transformers and panelboards should be purchased in this instance because, this location on dry land will be the permanent location, whether or not the Marina is renovated in the future. This scope item would be a significant amount of work, and new wire/conduit would have to be run again if the Marina is re-designed. However, having all 480 Volt
distribution equipment on dry land is preferred and this equipment relocation to dry land would not have to be done again for the Marina redesign.

2B) Raise Existing Equipment In Place:
If the existing transformers and panelboards are raised in their current locations, this would be a simpler solution that would not require a significant wire/conduit rework. New wire should be pulled to ensure no splices are necessary. The conduit could be extended and reused. However, if the Marina is re-designed, all of this work would have to be removed and redone. This option is recommended if there does not appear to be a possibility of re-designing the Marina in the near future.

3) Replace Boat Slip Receptacles and Wiring:
Replace boat slip receptacles with units having “weatherproof-while-in-use covers.” Currently, many receptacles are mounted above the level of the docks; if any are “at dock level or below”, they should be raised to be above the walking surface. Most of the existing junction boxes are mounted along the face of the dock structural members and this subjects the junction boxes and conduits to submersion during high water levels. New wiring (without splices) should be run to the new receptacles, as adding splices in the existing wiring would defeat the purpose of the work. The existing conduit could be reused and extended where necessary. However, if the Marina is to be re-designed, this improvement should be done at that time as the re-design will likely modify the location and number of slips, as well as provide for more traditional utility type marina pedestals that would contain power and water within a dock mounted for each slip.

4) New Lighting:
The poles and light fixtures should be replaced/added to as necessary for proper lighting levels along the piers and in the fairways. A photometric study should be performed during design and lighting suitable for the area should be selected and installed. Existing wiring and conduit may not be able to be re-used, especially if pole placement moves or additional poles are added. However, if the Marina is to be re-designed, this improvement should be done at that time as a re-design will likely affect the light pole locations. Additionally, the use of marina pedestals for lighting can illuminate walkways and reduce (or possibly eliminate in some areas) the use of overhead pole mounted fixtures for pedestrian area lighting.
General Maintenance Recommendations:

1. Obtain the services of a structural underwater marine survey company to evaluate the piers, pilings, finger docks, seawall and breakwall. This will include the inspection of all finger dock-to-pier connections. This will determine if any immediate, non-visible structural repairs need to be made. Particular attention needs to be paid to the area under the breakwall by the “flow gate”, where the work barge is located, the concrete deterioration shown in Photo 4 and the finger dock connections as noted. The outcome of the marine report should also make a recommendation for the frequency of subsequent evaluations until such time that the new construction to re-build the Marina is undertaken.

2. Re-install the flow gate plates at the NW section of the breakwall to reduce the turbulence inside the Marina generated by passing freighters.

3. Have the dock electrical inspected by a licensed electrician prior to turning power services back on.

4. Build barrier protection around substation as recommended.

5. Repair fence sections along seawall that have fallen over or become detached from the posts and rails.

6. Repair erosion along the seawall at shoreline.

7. Make maintenance repairs for erosion/washout damage to the base below asphalt pavement, along the breakwall. (Performing the marine survey as recommended below may help determine the cause and extent of washout areas that are occurring along the breakwall sheet piling.)

8. Route temporary water lines, where installed, under or through the dock areas (above the water level) so that they do not present a trip hazard where they cross each finger pier. If this is not possible due to dock construction in a specific area, install high visibility yellow step-over cover secured to the dock, signage and/or paint the pipe high-visibility yellow to alert boaters to the potential trip hazard.

Planning for Future Improvements:

1. Start Master Planning for a New Marina:
 a. Enlist professional Master Planning assistance to gather User data and develop concepts for a new Marina facility, based upon data results. As part of the data collection, determine what services/amenities boaters want (power, potable water, WiFi, jet ski storage, dock boxes, cable TV, etc.), trend sizing for slips, and what costs User’s may be willing to pay for such facilities. Establishing this Master Layout Plan will provide the roadmap for potentially phasing in the improvements over time. Without a vision of the overall plan, the elements and steps to achieve it cannot be defined.
 b. Concept layouts need to include accessibility requirements for the slips. Accessible boat slips need to be dispersed throughout a facility for the different types of slips the facility provides.
 c. Floating dock systems should be given a priority in the concept layouts and budgeting process due to their ability to accommodate fluctuation in water levels and ease of use for boaters.
Floating dock systems would have ramps at their pier entrance points that can move and extend depending on the water level. Consideration of bubbling the harbor in the winter months needs to be factored into the overall maintenance measures of using floating docks.

d. Fixed, pile supported dock systems can also be an element considered, as an alternative to floating dock systems. Pile supported systems typically also require obtaining soil borings early in the schematic planning phase so that the requirements for fixed pier supports are generally understood and accounted for accurately in the preliminary budgeting.

e. Dredging may need to be a consideration, depending on the current conditions below the water surface. Depending on when the new facilities might be built, bathymetric survey mapping for the harbor bottom should also be budgeted.

f. With a re-design of the Marina, the accessible route(s) to the new dock ramps would also need to be considered to meet the maximum slopes for turning areas and cross slopes on the accessible route. Curb ramps and accessible parking spaces serving the new layout would also need to be factored into the design if existing conditions cannot accommodate this need.

PROJECT PLANNING AND BUDGETING:

As recommended above, the Marina is functionally obsolete and the dock components are not salvageable for re-use. General maintenance items need to be addressed on an annual basis, as budget allows. Going forward though, HRC recommends that the City start planning for the re-design and replacement of the Marina piers, finger docks and utilities.

The first step in this process is to define the needs/wants of the User’s and prioritize those items; essentially to develop a User Survey and then tabulate the data/responses. The User Survey should query boaters about amenities desired, slip length needs, frequency of marina use, potential rental fee ranges that a User might be willing to pay for an updated facility, etc.

Master Planning services would follow the User Survey or could be included by the consultant performing the planning as an initial step in that process. The intent of the Master Plan would be to provide a vision for the new facility and to provide marketing tools to generate interest and seek funding sources for the project. At this stage of the project, a conceptual budget needs to be developed and funding options researched.

The Marina Design cost is included in the construction costs range shown in the Planning Budget Costs. It is a function of the overall projected construction cost and, for the purpose of this assessment recommendation, is 10% of the projected construction cost.
The Marina Construction cost range is based upon the understanding that there will be fewer slips in the new design than the 270 existing slips. For the purposes of this estimate, we have assumed 20% +/- fewer slips so the new marina would contain approximately 216 slips.

Slip cost is based on 2020 data published by the Michigan Department of Natural Resources (DNR), Waterways Facilities Assessment (with an escalation factor for 2021), HRC costs data from prior projects and current RS Means estimating guides.

We have assumed an average slip length of 35 ft, 8 ft wide main piers and 3 ft wide finger docks of fixed dock construction. (Floating docks generally cost more than fixed dock construction. Without an actual layout to work with, the cost range we show reflects either method of construction.)

Our costs for the marina include dual use marine pedestals (1 per every 2 boats) and dock boxes at each slip. Utilities included are potable water, fire protection, electrical, and area lighting. (We assume that the water mains serving the marina from shore are suitable and do not need to be replaced.) New sheeting cap along the breakwall and bituminous walk replacement; miscellaneous items such as egress ladders, cleats and fencing are also included. An allowance for demolition of the existing marina and dredging has been factored in, as well as a 30% planning contingency and Contractor overhead and mark-up. As noted prior, the cost range also includes the Professional Design Fees for the work.
Planning Budget Costs:

<table>
<thead>
<tr>
<th>Item/Issue</th>
<th>Priority</th>
<th>Can do work now</th>
<th>Do work as part of a New Marina</th>
<th>Magnitude of Cost Range (in 2021 dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine inspection services</td>
<td>High</td>
<td>X</td>
<td></td>
<td>$30,000 - $50,000</td>
</tr>
<tr>
<td>Re-Install the flow gates (work by City)</td>
<td>High</td>
<td>X</td>
<td>(City to do work)</td>
<td></td>
</tr>
<tr>
<td>Have dock electrical inspected by licensed electrician before re-energizing</td>
<td>High</td>
<td>X</td>
<td></td>
<td>$3,500 - $5,000</td>
</tr>
<tr>
<td>Repair Fencing</td>
<td>High</td>
<td>X</td>
<td>(City to do work)</td>
<td></td>
</tr>
<tr>
<td>Repair areas of erosion along seawall</td>
<td>High</td>
<td>X</td>
<td></td>
<td>$10,000 - $25,000 (City may be able to do this work)</td>
</tr>
<tr>
<td>Repair /Patch areas of erosion under asphalt walkway along break wall</td>
<td>High</td>
<td>X</td>
<td></td>
<td>$15,000 - $30,000 (City may be able to do this work)</td>
</tr>
<tr>
<td>Construct a permanent, concrete electrical substation flood barrier with footings (in lieu of the sandbags)</td>
<td>Low</td>
<td>X</td>
<td></td>
<td>$50,000 – $80,000</td>
</tr>
<tr>
<td>High visibility yellow designation at each slip where piping crosses finger dock</td>
<td>High</td>
<td>X</td>
<td>(City to do work)</td>
<td></td>
</tr>
<tr>
<td>Replace and relocate transformers/panel boards to dry land, run new conduit and wire</td>
<td>Medium</td>
<td>X</td>
<td>(dock wiring would need to be re-done if new marina is constructed)</td>
<td>$1,500,000 - $2,000,000</td>
</tr>
<tr>
<td>Raise existing transformers/panel boards in-place, extend conduit, run new wire</td>
<td>Medium</td>
<td>X</td>
<td>(Work would be scrapped if new marina is constructed)</td>
<td>$300,000 – $500,000</td>
</tr>
<tr>
<td>Replace boat slip receptacles and wiring for each slip</td>
<td>Medium</td>
<td>X</td>
<td>(Work would be scrapped if new marina is constructed)</td>
<td>$250,000 - $350,000</td>
</tr>
<tr>
<td>Replace existing area lighting with new poles and fixtures (26 poles); perform photometric study during design to select proper fixtures and pole locations</td>
<td>Low</td>
<td>X</td>
<td>(Work would be scrapped if new marina is constructed)</td>
<td>$200,000 – $260,000</td>
</tr>
<tr>
<td>Use Survey for boaters, tabulate data</td>
<td>High</td>
<td>X</td>
<td></td>
<td>$25,000 – $35,000</td>
</tr>
<tr>
<td>Master Planning for New Marina</td>
<td>High</td>
<td>X</td>
<td></td>
<td>$60,000 – $100,000</td>
</tr>
<tr>
<td>New Marina – Design and Contr. Construction Costs</td>
<td>NA</td>
<td>NA</td>
<td>X</td>
<td>$10 million - $13 million</td>
</tr>
</tbody>
</table>
HRC OFFICE LOCATIONS

- **Bloomfield Hills**
 555 Hulet Drive
 Bloomfield Hills, MI 48302
 (248) 454-6300 | Fax: (248) 454-6312

- **Detroit**
 Buhl Building, Suite 1650
 535 Griswold Street | Detroit, MI 48226
 (313) 965-3330

- **Howell**
 105 West Grand River
 Howell, MI 48843
 (517) 552-9199

- **Kalamazoo**
 834 King Highway, Suite 107
 Kalamazoo, MI 49001
 (269) 665-2005

- **Delhi Township**
 2101 Aurelius Road, Suite 2
 Holt, MI 48842
 (517) 694-7760

- **Grand Rapids**
 801 Broadway NW, Suite 215
 Grand Rapids, MI 49504
 (616) 454-4286

- **Jackson**
 401 S. Mechanic Street, Suite B
 Jackson, MI 49201
 (517) 292-1295

- **Lansing**
 215 South Washington Square
 Lansing, MI 48933
 (517) 292-1488